Ứng dụng thuật toán rừng ngẫu nhiên để dự báo sóng va đập không khí sinh ra do nổ mìn trên mỏ than Đèo Nai

- Tác giả: Nguyễn Hoàng, Bùi Xuân Nam, Trần Quang Hiếu
Cơ quan:
Trường Đại học Mỏ - Địa chất
- *Tác giả liên hệ:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Từ khóa: sóng va đập không khí, học máy, Random Forest, thuật toán rừng ngẫu nhiên, mỗ hình dự báo, mỏ than Đèo Nai
- Nhận bài: 25-07-2017
- Sửa xong: 20-09-2017
- Chấp nhận: 10-12-2017
- Ngày đăng: 31-12-2017
- Lĩnh vực: Khai thác mỏ
Tóm tắt:
Mechanization Blasting method is one of the methods to break rock in open-pit mine and its effects is undeniable. Beside the advantages of the blasting method such as the large volume of rock is broken, can break any type of rock, not depending on the climate, etc then the disadvantages of this method include air-blast overpressure, ground vibration and fly rock. They can make vibration of works, broken the giass of the doors and affecting of residential and environmental damages. Most of open-pit mine have facing to these problems. The paper presents an approach using Random Forest machine learning algorithm to predict the air-blast overpressure caused by blasting operation at Đèo Nai coal mine, Quảng Ninh. The data used in this case study were collected from 146 explosions of the mine. The results showed that Random Forest is a suitable algorithm for predicting air-blast overpressure at Đèo Nai coal mine with RMSE=1.519147 và R2=0.941586. This study will help the blasters of Đèo Nai coal mine can adjust the parameters of blast fields and is the reference for the other open-pit mine, where the same condition with Đèo Nai coal mine.

1. Danial Jahed Armaghani và các cộng sự. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by biasting", Arabian Journal of Geosciences. 8(12), tr. 10937-10950.
2. US Army (1998), Technical manual design and analysis of hardened structures to conventional weapons effects, Army TM5-855-1, Washington DC.
3. L Breiman, "Manual setting up, using, and understanding random forests V4. 0. 2003 http://oz. berkeley. edu/users/breiman", Using_random_forests _v4. 0. pdf.
4. Leo Breiman (1996), ''Bagging predictors", Machine learning. 24(2), tr. 123-140.
5. Leo Breiman (2001), "Random forests", Machine learning. 45(1), tr. 5-32.
6. Andrew G Bunn, Scott J Goetz và Gregory J Fiske (2005), "Observed and predicted responses of plant growth to climate across Canada", Geophysical Research Letters. 32(16).
7. Yamileth Domiguez-Haydar and Armbrecht (2011), "Response ants and their seed removal in rehabilitation areas and forests at El Cerrejon coal mine in Colombia", Restoration Ecology. 19(201), ừ. 178-184.
8. Cesare Furlanello và các cộng sự. (2003), GIS and the random forest predictor: Integration in R for tick- borne disease risk assessment, Proceedings of DSC.tr. 2.
9. M Hajihassani và các cộng sự. (2014), "Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization", Applied Acoustics. 80, tr. 57-67.
10. Mahdi Hasanipanah và các cộng sự. (2016), "Several non-linear models in estimating air- overpressure resulting from mine blasting", Engineering with Computers. 32(3), tr. 44M55.
11.. Rick L Lawrence, Shana D Wood và Roger L Sheley (2006), "Mapping invasive plants using hyperspectral imagery and Breinfian Cutler classifications (RandomForest)", Remote Sensing of Environment. 100(3), tr. 356-362. .
12. Andy Liaw và Matthew Wiener (2002), "Classification and regression by random Forest", R news. 2(3), tr. 18-22.
13. Dong Longjun và các cộng sự. (2011), "Comparisons of random forest and support vector machine for predicting blasting vibration characteristic parameters", Procedia Engineering. 26, tr. 1772-1781.
14. R.p. Mayor và R. Flanders (1990), "Technical manual simplified computer model of air blast effects on building walls", us Department of state, Office of Diplomatic Security, Washington DC.
15. Edy Tonnizam Mohamad và các cộng sự. (2016), "Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique", Environmental Earth Sciences. 75(2), tr. 174.
16. Jason w Osborne (2010), "Improving your data transformations: Applying the Box-Cox transformation", Practical Assessment, Research & Evaluation. 15(12), tr. 1-9.
17. Anantha M Prasad, Louis R Iverson và Andy Liaw (2006), "Newer classification and regression tree techniques: bagging and random forests for ecological prediction", Ecosystems. 9(2), tr. 181-199.
18. Alex M Remennikov và Timothy A Rose (2007), "Predicting the effectiveness of blast wall barriers using neural networks", International journal of impact engineering. 34(12), tr. 1907-1923.
19. p Segarra và các cộng sự. (2010), "Prediction of near field overpressure from quarry blasting", Applied Acoustics. 71(12), tr. 1169-1176.
20. Wen Tingxin và Zhang Bo (2014), "Prediction model for open-pit coal mine slope stability based on random forest", Science & Technology Review. 32(4-5), tr. 105-109.
Các bài báo khác