Analysis of Electron Transport Coefficients in Gas Mixtures forPlasma Discharge in Semiconductor Etching: A Trend in MiningElectrical Equipment Manufacturing

https://tapchi.hoimovietnam.vn/vi/archives?article=25069
  • Cơ quan:

    1 University of Transport and Communications,3 Cau Giay St., Ha Noi, Vietnam
    2 Hung Yen University of Technology and Education, Viet Tien C., Hung Yen, Vietnam
    3 Lai Chau Power Company, Dien Bien Phu Rd., Lai Chau, Vietnam 4Sao Do University, Chu Van An W., Hai Phong City, Vietnam

  • *Tác giả liên hệ:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Nhận bài: 11-10-2025
  • Sửa xong: 15-11-2025
  • Chấp nhận: 18-11-2025
  • Ngày đăng: 31-12-2025
Trang: 52 - 57
Lượt xem: 169
Lượt tải: 5
Yêu thích: , Số lượt: 0
Bạn yêu thích

Tóm tắt:

This study presents the calculation and analysis of electron transport coefficients in gas mixturescomposed of argon (Ar), molecular fluorine (F2), and nitrogen (N2), with a focus on their relevance to gasdischarge applications. Using the BOLSIG+ Boltzmann solver and well-established electron collisioncross-section data, key parameters such as mobility, diffusion coefficients, and ionization coefficients wereevaluated across a range of reduced electric fields (E/N) and mixture ratios. These data serve as criticalinput for the modeling and optimization of low-temperature plasma discharges, particularly in applicationssuch as reactive ion etching and thin film deposition using inductively coupled plasma systems.

Trích dẫn
Hien Xuan Pham, Tuoi Thi Phan, Luong Vi Tran, Hoa Ngoc Le và Diep Thi Pham, 2025. Analysis of Electron Transport Coefficients in Gas Mixtures forPlasma Discharge in Semiconductor Etching: A Trend in MiningElectrical Equipment Manufacturing, Tạp chí Công nghiệp Mỏ, số XXXIV, kỳ 6, tr. 52-57.
Tài liệu tham khảo

[1]. An, J. (2008). Study of surface kinetics in PECVD chamber cleaning using remote plasma source. Doctoral dissertation, Massachusetts Institute of Technology. 163 pages.

[2]. Plummer, J. D., Deal, M., & Griffin, P. B. (2000). Silicon VLSI technology: Fundamentals, practice and modeling. Prentice Hall, Upper Saddle River, NJ.

[3]. Graves, D. B., Labelle, C. B., Kushner, M. J., Aydil, E. S., Donnelly, V. M., Chang, J. P., & others. (2024). Science challenges and research opportunities for plasma applications in microelectronics. Journal of Vacuum Science & Technology B, 42(4) 47 pages . DOI: 10.1116/6.0003531

[4]. Parent, B., & Rodriguez Fuentes, F. M. (2024). Progress in electron energy modeling for plasma flows and discharges. Physics of Fluids, 36(8), 086113. DOI: 10.1063/5.0219552

[5]. Benyoucef, D., & Yousfi, M. (2015). Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge. Physics of Plasmas, 22(1), 013510. DOI: http://dx.doi.org/10.1063/1.4907178

[6]. De Wild-Scholten, M. J., Alsema, E. A., Fthenakis, V. M., Agostinelli, G., Dekkers, H., & Kinzig, V. (2007). Title of the paper if available. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milano, Italy.

[7]. Tressaud, A. (2006). Fluorine and the environment: Agrochemicals, archaeology, green chemistry and water (Vol. 2). Elsevier

[8]. Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). Advanced inorganic chemistry (6th ed.). Wiley-Interscience.

[9]. Yun, Y. B., Park, S. M., Kim, D. J., Lee, N.-E., Choi, C. K., Kim, K. S., & Bae, G. H. (2008). Superior etch performance of Ar/N₂/F₂ for PECVD chamber clean. Thin Solid Films, 516(12), 3549–3554.

[10]. Benyoucef, D. (2024). Monte Carlo modeling and simulation of electron dynamics in low temperature methane gas. Engineering, Technology & Applied Science Research, 14(6), 18153–18159

[11]. Zhou, J., et al (2022). “Advances in gas sensors for mining safety: Materials, structures, and challenges.” Journal of Hazardous Materials, 425.

[12]. Hagelaar, G. J. M., & Pitchford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14, 722–733

[13]. Ali, M. A., & Majeed, R. H. (2024). Calculation of electron transport parameters in noble gases: II. Helium and argon. AIP Conference Proceedings, 3097, 090012

[14]. Ibrahim, S. I., Jawad, E. A., & Jassim, M. K. (2022). Study the effect of mixing N₂ with SF₆ gas on electron transport coefficients. AIP Conference Proceedings, 2386, 070003.

[15]. Hien, P. X., Son, T. T., & Tuan, D. A. (2020). Studying electron transport coefficients in C₂H₄–SiH₄ mixtures using BOLSIG+ program. Lecture Notes in Networks and Systems, 178, 748–754.

[16]. Nakamura, Y., & Kurachi, M. (1988). Electron transport parameters in argon and its momentum transfer cross section. Journal of Physics D: Applied Physics, 21(5), 718–722.

[17]. Tuan, D. A., & Jeon, B.-H. (2011). Determination of the vibrational excitation cross-section for the F₂ molecule in a plasma discharge simulation. Journal of the Korean Physical Society, 58(4), 765–770

[18]. Nakamura, Y. (2010). Private communication. Tokyo Denki University, Tokyo, Japan.

Các bài báo khác