Nghiên cứu cơ chế của quá trình xử lý bùn đỏ bằng axit và khả năng sử dụng bùn đỏ làm chất hấp phụ photphat

- Tác giả: Vũ Ngọc Quý 1, James Vaughan, Hong Peng 2
Cơ quan:
1 Chi nhánh Luyện đồng Lào Cai-VIMICO, Tổng Công ty Khoáng sản - TKV
2 Trường Đại học Công nghệ Hóa học, Đại học Tổng hợp Queensland, Australia
- *Tác giả liên hệ:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Nhận bài: 18-04-2022
- Sửa xong: 15-05-2022
- Chấp nhận: 25-05-2022
- Ngày đăng: 30-06-2022
- Lĩnh vực: Thông gió, An toàn và Bảo vệ môi trường
Tóm tắt:
Một công nghệ với chi phí thấp để sử dụng bùn đỏ chưa có do thành phần phức tạp của nó. Trong công trình này đã nghiên cứu cơ chế axit biến đổi bùn đỏ và tác động của nó đến các sự hấp phụ photphat (PO4 3-). Dữ liệu thử nghiệm chỉ ra rằng, axit clohydric có thể làm thay đổi đáng kể thành phần khoáng chất bùn đỏ. Nồng độ axit thấp sẽ làm giảm đáng kể độ kiềm của bùn đỏ thông qua quá trình trao đổi ion giữa proton và pha Sodalit. Nồng độ 0,25M và cao hơn có thể hòa tan hoàn toàn pha Sodalit, để lại một bề mặt có khả năng hấp thụ cao. Bùn đỏ được xử lý bằng axit thể hiện khả năng hấp phụ photphat tốt hơn so với bùn đỏ ban đầu trong điều kiện pH không được kiểm soát, trong khi bùn đỏ gốc được quan sát thấy ở pH 5,0 và 6,0 do kết tủa photphat canxi, không bao gồm 100% photphat từ dung dịch chứa 100mg / L PO4 3-. Người ta cũng phát hiện ra rằng pha Hematit có vai trò lớn trong việc cố định photphat của bùn đỏ được xử lý bằng axit, trong khi nhiệt độ có ảnh hưởng hạn chế đến quá trình hấp phụ. Bùn đỏ có thể được sử dụng như một chất hấp phụ chi phí thấp cho ngành công nghiệp xử lý nước thải.

1. Wang, L.; Sun, N.; Tang, H.; Sun, W. (2019), A Review on Comprehensive Utilization of Red Mud andProspect Analysis. Minerals (Basel) 2019, 9 (6), 362.
2. Mayes, W. M.; Burke, I. T.; Gomes, H. I.; Anton, Á. D.; Molnár, M.; Feigl, V.; Ujaczki, É. (2016),Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary. Journal ofSustainable Metallurgy 2016, 2 (4), 332-343.
3. Dubey, K.; Dubey, K. P. (2011), A Study of the Effect of Red Mud Amendments on the Growth ofCyanobacterial Species. Bioremediation journal 2011, 15 (3), 133-139.
4. Liu, Z.; Li, H. (2015), Metallurgical process for valuable elements recovery from red mud—A review.Hydrometallurgy 2015, 155, 29-43.
5. Borra, C. R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. (2016), Recovery of RareEarths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. Journal of SustainableMetallurgy 2016, 2 (4), 365-386.
6. Yang, J.; Xiao, B. (2008), Development of unsintered construction materials from red mud wastesproduced in the sintering alumina process. Construction & building materials 2008, 22 (12), 2299-
7. Bhatnagar, A.; Vilar, V. J. P.; Botelho, C. M. S.; Boaventura, R. A. R. (2011), A review of the use ofred mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ Technol
8. Peng, H.; Kim, T.; Vaughan, J. (2020), Acid Leaching of Desilication Products: Implications for AcidNeutralization of Bauxite Residue. Ind. Eng. Chem. Res 2020, 59 (17), 8174-8182.
9. Li, X.; Ji, M.; Nghiem, L. D.; Zhao, Y.; Liu, D.; Yang, Y.; Wang, Q.; Trinh, Q. T.; Vo, D.-V. N.; Pham,V. Q.; Tran, N. H. (2020), A novel red mud adsorbent for phosphorus and diclofenac removal fromwastewater. Journal of molecular liquids 2020, 303, 112286.
10. Almanassra, I. W.; Kochkodan, V.; McKay, G.; Atieh, M. A.; Al-Ansari, T. (2021), Review of phosphateremoval from water by carbonaceous sorbents. J Environ Manage 2021, 287, 112245.
11. Koumanova, B.; Drame, M.; Popangelova, M. (1997), Phosphate removal from aqueous solutionsusing red mud wasted in bauxite Bayer’s process. Resources, conservation and recycling 1997, 19(1), 11-20.
12. Pradhan, J.; Das, J.; Das, S.; Thakur, R. S. (1998), Adsorption of Phosphate from Aqueous SolutionUsing Activated Red Mud. J Colloid Interface Sci 1998, 204 (1), 169-172.
13. Mohanty, S.; Pradhan, J.; Das, S. N.; Thakur, R. S. (2004), Removal of phosphorus from aqueoussolution using alumized red mud. International journal of environmental studies 2004, 61 (6), 687-697.
14. Li, Y.; Liu, C.; Luan, Z.; Peng, X.; Zhu, C.; Chen, Z.; Zhang, Z.; Fan, J.; Jia, Z. (2006), Phosphateremoval from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 2006,
15. Shivkumar, S. P.; Najar, P. A. M.; Vijay, M. T. (2016), Removal of Phosphate Using Red Mud: AnEnvironmentally Hazardous Waste By-Product of Alumina Industry. Advances in physical chemistry
16. Akhurst, D. J.; Jones, G. B.; Clark, M.; McConchie, D. (2006), Phosphate Removal from AqueousSolutions using Neutralised Bauxite Refinery Residues (Bauxsol™). Environmental chemistry 2006, 3(1), 65.
17. Ye, J.; Cong, X.; Zhang, P.; Hoffmann, E.; Zeng, G.; Liu, Y.; Fang, W.; Wu, Y.; Zhang, H. (2015),Interaction between phosphate and acid-activated neutralized red mud during adsorption process.Applied surface science 2015, 356, 128-134.
18. Ye, J.; Cong, X.; Zhang, P.; Zeng, G.; Hoffmann, E.; Liu, Y.; Wu, Y.; Zhang, H.; Fang, W.; Hahn,H. H. (2016), Application of acid-activated Bauxsol for wastewater treatment with high phosphateconcentration: Characterization, adsorption optimization, and desorption behaviors. J Environ Manage
19. Ye, J.; Zhang, P.; Hoffmann, E.; Zeng, G.; Tang, Y.; Dresely, J.; Liu, Y. (2014), Comparison of ResponseSurface Methodology and Artificial Neural Network in Optimization and Prediction of Acid Activation ofBauxsol for Phosphorus Adsorption. Water, air, and soil pollution 2014, 225 (12), 1-11.
20. Huang, W.; Wang, S.; Zhu, Z.; Li, L.; Yao, X.; Rudolph, V.; Haghseresht, F. (2008), Phosphate removalfrom wastewater using red mud. J Hazard Mater 2008, 158 (1), 35-42.
21. Guo, T.; Yang, H.; Liu, Q.; Gu, H.; Wang, N.; Yu, W.; Dai, Y. (2018), Adsorptive removal of phosphatefrom aqueous solutions using different types of red mud. Water Sci Technol 2018, 2017 (2), 570-577.
22. Peng, H.; Ding, M.; Vaughan, J. (2018), The Anion Effect on Zeolite Linde Type A to Sodalite PhaseTransformation. Ind. Eng. Chem. Res 2018, 57 (31), 10292-10302.
23. Vogrin, J.; Santini, T.; Peng, H.; Vaughan, J. (2020), The anion effect on sodium aluminosilicatesformed under Bayer process digestion conditions. Hydrometallurgy 2020, 192, 105236.
24. Wang, S.; Tuan, N.; Peng, H.; Huang, L. (2020), On the Mechanism of Sodic Removal from BauxiteResidue and Bauxite Desilication Products (BDP) Using Acetic Acid. JOM (1989) 2020, 72 (1), 309-
25. Gräfe, M.; Power, G.; Klauber, C. (2011), Bauxite residue issues: III. Alkalinity and associated chemistry.Hydrometallurgy 2011, 108 (1), 60-79.
26. Hubicki, Z. (2012), Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using IonExchange Methods. IntechOpen: 2012.
27. SmiAiklas, I.; Smiljani A, S.; PeriA-GrujiA, A.; A ljiviA-IvanoviA, M.; MitriA, M.; AntonoviA, D. (2014),Effect of acid treatment on red mud properties with implications on Ni(II) sorption and stability. Chemicalengineering journal (Lausanne, Switzerland: 1996) 2014, 242, 27-35.
28. Saba, D.; Armando, B.; Doretta, C.; Arianna, C.; Andrea, G. C. (2018), Impact of pH and Ionic MolarRatios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges.Resources (Basel) 2018, 7 (4), 71.
29. Toshima, T.; Hamai, R.; Tafu, M.; Takemura, Y.; Fujita, S.; Chohji, T.; Tanda, S.; Li, S.; Qin, G. W.(2014), Morphology control of brushite prepared by aqueous solution synthesis. Journal of AsianCeramic Societies 2014, 2 (1), 52-56.
30. Li, M.; Liu, J.; Xu, Y.; Qian, G. (2016), Phosphate adsorption on metal oxides and metal hydroxides:A comparative review. Environmental reviews 2016, 24 (3), 319-332.
31. Elzinga, E. J.; Sparks, D. L. (2007), Phosphate adsorption onto hematite: An in situ ATR-FTIRinvestigation of the effects of pH and loading level on the mode of phosphate surface complexation. JColloid Interface Sci 2007, 308 (1), 53-70.
32. Shabnam, N.; Ahn, Y.; Maksachev, A.; Lee, J. H.; Huang, C.-P.; Kim, H. (2019), Application of red-mudbased ceramic media for phosphate uptake from water and evaluation of their effects on growth of Irislatifolia seedling. Sci Total Environ 2019, 688, 724-731.LỜI CẢM ƠNTác giả cảm ơn Phòng thí nghiệm thủy Luyện kim - Đại học Queensland đã hỗ trợ và cung cấp mẫuvật và các thiết bị, dụng cụ thí nghiệm phục vụ cho quá trình nghiên cứu.
Các bài báo khác